| MATHEMATICS - NUMERACY 2 nd SAMs 2017 Unit 2 (Calculator allowed) Intermediate Tier | Mark | MARK SCHEME
Comments (Page 1) | |---|----------|--| | Unit 2 (Calculator allowed) Intermediate Tier | 5.4 | | | 1. Use of 30 teabags (for £1.80)
Method to compare, e.g. multiples of 30 & 40:
30, 60, 90, 120 & 40, 80, 120 | B1
M1 | OR equivalent, e.g. 1 or 10 teabags considered for both bags of 30 & 40 | | 4 × 1.8(0) and 3 × 2.60 | m1 | OR 1(.)80 \div 3(0) and 2(.)60 \div 4(0) with consistent place value to compare OR 60(p for 10) and 65(p for 10) with consistent place value to compare OR 60(p for 10) and (\pounds) 2(.)60 $ (\pounds)$ 1(.)80 = 80p for extra 10 OR 2.40 for 40 OR 1.80 \div 30 \times 40 OR 1.80 \div 3 \times 4 OR 60(p) for 10 and 80(p) for extra 10. | | (£)7.2(0) and (£)7.8(0) or equivalent | A1 | | | Offer A (20 teabags + 50% free) is better value | E1 | Depends on M1, m1 awarded with appropriate FT Accept answers suggesting 'depends if you need 40 teabags exactly' etc. provided M1, m1, A1 previously awarded. | | | 5 | SC1 for an answer based on comparison of 20 teabags for £1.80 with 40 teabags for £2.60, appropriate working with conclusion of 40 teabags | | 2.(a) 150 | B1 | | | (b) 325 | B1 | | | | 2 | | | 3.(a) 7cm (± 0.2cm) × 8 (÷ 100) | M1 | Award M1 only for answers 56cm or 56m or 56 or similar from ± 0.2cm tolerance | | 0.56 (m) | A1 | | | (b) Measuring 2 appropriate angles (±2°) to check interior (allied), or appropriate corresponding or alternate angles | B1 | The size of angles may not actually be recorded, e.g. on diagram equal angles marked <i>x</i> and <i>y</i> . | | Conclusion based on the angles measured and accurate knowledge of parallel line angle facts. | E1 | Accept references to the angles which are equal or sum to 180° Do not accept 'travelling in the same direction so won't meet' | | | 4 | | | MATHEMATICS - NUMERACY
2 nd SAMs 2017 | Mark | MARK SCHEME
Comments (Page 2) | |---|-----------|--| | Unit 2 (Calculator allowed) Intermediate Tier | | Comments (Fage 2) | | 4.(a) £480
(b) £1620 | B1
B1 | | | (c)(i) Paying for 10m | B1 | If not awarded, FT use of 9m throughout | | 11×1mth (11×10×40×1.2 =) (£)5280
AND
12mth charge (320×10×1.2 =) (£)3840 | B2 | B1 for either correct, or if neither correct award for excluding VAT charges of (£)4400 and (£)3200 respectively | | 6mth + 5×1mth 180×10 + 5×40×10 (×1.2) (£)4560 | M1
A1 | Accept excluding VAT (£3800) | | Conclusion to pay annual charge based on the calculation of all 3 possibilities | E1 | FT appropriate conclusion depending on
the sight of any two of the 3 correct
charges given including VAT | | | | If misread not using 'per metre'
consistently, hence MR-1, then B0, then
FT throughout | | Organisation and communication
Accuracy of writing | OC1
W1 | | | (ii) Greatest saving (£5280 - £3840 =) (£)1440 | B1 | FT their least of 3 possibilities subtracted correctly from their greatest of 3 possibilities | | 5.(a) 5.5 (metres) | 11
B1 | Accept answers in the range 5.4 to 5.6 | | | | inclusive | | (b) Intention to read horizontal scale for depth of 3m filling | M1 | Accept sight of 0.6 (hours) | | 36 (minutes) | A1 | | | (c) 13(:)36 or 1 36 pm AND 18(:)36 or 6 36 pm (d) 4 th statement identified | B2
B1 | B1 for either correct, or B1 if both given with incorrect time notation or B1 for two times given that are 5 hours apart e.g. 14:36 and 19:36, i.e. FT 'their first time' + 5 hours for second B1. B0 if more than one statement identified. | | (u) 4 Statement Identified | 6 | bo it more than one statement identified. | | 6.(a) 9 × 10 + 160 = 250 or equivalent | M1 | | | 50(°F) | A1 | | | (b) $9c = 5f - 160$
$c = \frac{5f - 160}{9}$ or $c = \frac{5}{9}(f - 32)$ | B1
B1 | FT until 2 nd error | | 7 (0)(i) 252(9) | 4
D1 | | | 7. (a)(i) 253(°) | B1 | | | (ii) 360 – 42 = 318(°) | M1
A1 | SC1 for answers of 073(°) and 138(°) in (i) and (ii) | | (b) 60° with construction arcs | M1 | Accept anywhere on the line Allow sight of construction arcs for 60° | | (30° by) bisecting 'their angle', with arcs shown
Correct 30° from appropriate construction with
line shown at the right hand end of the given line | M1
A1 | Line (road) may not be shown Depends on both M marks | | and shown at the right hand end of the given line | 6 | | | MATHEMATICS - NUMERACY | Mark | MARK SCHEME | |--|----------|--| | 2 nd SAMs 2017
Unit 2 (Calculator allowed) Intermediate Tier | | Comments (Page 3) | | 8.(a) $2 \times (8.5 + 4.6) + 4 \times 2.2$ (+ 18) and no others | M2 | Or equivalent. Attempt to consider all 6 faces or all 8 lengths (+ 18) M1 for omitting one dimension OR for adding all three dimensions with at least one multiplied by 2 or 4. | | = 53 (cm) | A1 | CAO. An answer of 35 implies M2A0. | | (b) $2 \times l + 2 \times w + 4 \times h + 18$ (cm) or equivalent (and no extras) | B2
5 | B1 for 1 error or 1 slip in notation.
Treat an answer of $l+w+4\times h+18$ as 1 error (omitting bottom), hence award B1.
If B2 penalise extra incorrect working -1 | | 9.(a) 250 × 4.37 | M1 | | | = 1092.5(0)
(Buys)1050 (zloty) | A1
A1 | FT provided M1 awarded | | $1050 \div 4.37 = (£)240.27(46)$ | M1
A1 | FT 'their 1050 zloty' provided rounded to the nearest 50. Must be in zloty not £s. | | (b) (1050 – 340.40 =) 709.6(0)
709 ÷ 4.43 | B1
M1 | FT 'their (a)' provided >340.40 FT rounding down their 709.60 to whole | | (£) 160.05 | A1 8 | number Accept (£)160.04 but not (£)160.045 An answer of (£)160.18 (omitting to round down) should be awarded B1 then SC1 in (b). An answer of (£)160.27 (rounding up instead of down) should be awarded SC1, with B1 if 709.6(0) seen. | | 10. 400 x 1.01 ¹⁴ or equivalent full method | M2 | M1 for correctly multiplying by 1.01 ⁿ | | (£)459.79 | A1 | where n is a positive integer.
Award M2A0 for (£)459.789(685) | | 11.(a) 50 000 ÷ 0.35 = | 3
M1 | | | 142857 | A1 | | | (b) (Total power in MW is)
2.0×30 + 3.5×54 + 3.6×25 + 3.0×60
(Total number of turbines 30+54+25+60 = 169)
(Mean full power of a turbine is) | M1 | (Σfx = 60+189+90+180 = 519) | | 519 ÷ 169
3.07(1 MW) | m1
A1 | FT 'their Σfx' ÷ 'their 517'
CAO. Do not accept 3.1 or 3 (MW) | | (At 45% power) 0.45 × 3.07() or equivalent | m1 | FT 'their 3.07()' provided M1, m1 previously awarded | | 1.38 (MW) | A1 | Their answer must be given correct to 2 decimal places, i.e. award M1A0 for 1.381(95) or 1.3815 or 1.382. | | | | Alternative:
(45% power) 0.45×2, 0.45×3.5, 0.45×3.6,
0.45×3 M1
0.9×30 + 1.575×54 + 1.62×25 + 1.35×60
m1
233.55 (MW) CAO A1
÷169 m1 | | | 7 | ÷169 m1
1.38 (MW) A1 | | MATHEMATICS - NUMERACY | Mark | MARK SCHEME | |---|----------------------|--| | 2 nd SAMs 2017
Unit 2 (Calculator allowed) Intermediate Tier | | Comments (Page 4) | | 12. (a) 0, 5, 25, 49, 83, 113, 120 | B2 | B1 for any three correct values, OR FT from 1 error for finding 3 further cumulative values accurately | | (b) 3 unique vertical plots correct at upper bounds All plots correct and joined, including to 0 at t=2.5 | M1
A1 | Only FT their <u>cumulative table</u> to (c) Accuracy of plotting: time on the grid line, cumulative frequency within the appropriate square with 1 st & last plots on the grid lines | | (c) Use of 15 minutes | M1
A1 | | | Conclusion: Target beaten by $2\frac{1}{2}$ minutes | | | | (d) TRUE FALSE TRUE TRUE FALSE | B2 | B1 for any 4 correct FT their cumulative frequency diagram CAO CAO FT their cumulative frequency diagram CAO | | 13.(a) Form and use a right-angled triangle with | 8
S1 | | | base 55cm and height 50 cm.
Tan $x = 50/55$
42(°) or 42.3(°) | M1
A3 | Or alternative FULL method. A2 for 42.27(°) A1 for tan ⁻¹ 0.909 or tan ⁻¹ (50/55) | | (a) Reason, e.g. 'original measurements may not have been accurate', or 'doesn't consider the thickness of the wood', | E1 | | | 14. Attempt to use Pythagoras' Theorem, e.g. | 6
M1 | | | length ² + width ² = 2.5^2
Use of length = $2 \times$ width
$(2 \times \text{width})^2$ + width ² = 2.5^2 or equivalent
width ² = 1.25 or width = $\sqrt{1.25}$
Width $1.1(2 \text{ metres})$ or $1.118(03 \text{ metres})$ | M1
m1
m1
A1 | OR equivalent. If units are given they must be correct. Alternative: | | | | Attempt to use Pythagoras' Theorem,
e.g. $length^2 + width^2 = 2.5^2$ M1
Use of $length = 2 \times width$ M1
Trial of a pair of values(< 2.5), one double
the other in Pythagoras' Theorem
m1 | | | | Trial of a pair of values(< 2.5), one
double the other in Pythagoras' Theorem
with improvement, closer to 2.5m
m1 | | | 5 | Width 1.1 metres or equivalent A1 |