Surname	Centre Number	Candidate Number
Other Names		0

GCSE

3300U60-1

MATHEMATICS

UNIT 2: CALCULATOR-ALLOWED HIGHER TIER

MONDAY, 13 NOVEMBER 2017 – MORNING

1 hour 45 minutes

ADDITIONAL MATERIALS

A calculator will be required for this paper.

A ruler, a protractor and a pair of compasses may be required.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

You may use a pencil for graphs and diagrams only.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all the questions in the spaces provided.

If you run out of space, use the continuation page(s) at the back of the booklet. Question numbers must be given for all work written on the continuation page.

Take π as 3·14 or use the π button on your calculator.

INFORMATION FOR CANDIDATES

You should give details of your method of solution when appropriate.

Unless stated, diagrams are not drawn to scale.

Scale drawing solutions will not be acceptable where you are asked to calculate.

The number of marks is given in brackets at the end of each question or part-question.

In question 4(a), the assessment will take into account the quality of your linguistic and mathematical organisation, communication and accuracy in writing.

NOV173300U60101

For Ex	aminer's us	e only
Question	Maximum Mark	Mark Awarded
1.	3	
2.	4	
3.	6	
4.	10	
5.	5	
6.	5	
7.	6	
8.	5	
9.	7	
10.	3	
11.	4	
12.	2	
13.	3	
14.	4	
15.	3	
16.	2	
17.	8	
Total	80	

Formula List - Higher Tier

Area of trapezium = $\frac{1}{2}(a+b)h$

Volume of prism = area of cross-section × length

Volume of sphere = $\frac{4}{3}\pi r^3$ Surface area of sphere = $4\pi r^2$

Volume of cone = $\frac{1}{3}\pi r^2 h$ Curved surface area of cone = $\pi r l$

In any triangle ABC

Sine rule
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Cosine rule
$$a^2 = b^2 + c^2 - 2bc \cos A$$

Area of triangle =
$$\frac{1}{2}ab \sin C$$

The Quadratic Equation

The solutions of $ax^2 + bx + c = 0$ where $a \ne 0$ are given by $x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$

$$x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$$

Annual Equivalent Rate (AER)

AER, as a decimal, is calculated using the formula $\left(1+\frac{i}{n}\right)^n-1$, where i is the nominal interest rate per annum as a decimal and n is the number of compounding periods per annum.

Simplify each of the following and circle the correct answer in each case. 1.

(a)
$$6p^6 \times 3p^3$$

[1]

$$9n^9$$

$$9n^{18}$$

$$9p^9$$
 $9p^{18}$ $18p^{18}$

$$18p^{2}$$

$$18p^{9}$$

(b)
$$3.4g^8 \div 13.6g^2$$

[1]

$$\frac{g^4}{4}$$

$$\frac{g^6}{4}$$

$$4g^4$$

$$4g^{6}$$

$$0.4g^{6}$$

(c)
$$\frac{m^3 \times m^6}{m^9}$$

[1]

$$m^2$$

$$m^4$$

A solution of the equation
$x^3 + 2x = 91$
lies between 4 and 5.
Use the method of trial and improvement to find this solution correct to 1 decimal place. You must show all your working.

3. ABC is an isosceles triangle with AB = AC.

Diagram not drawn to scale

Calculate the value of <i>y</i> .	[6]

© WJEC CBAC Ltd. (3300U60-1)

Turn over.

A triangular prism of length 2 metres is shown below.

Diagram not drawn to scale

AC = 21 cm, BC = 35 cm and $\overrightarrow{BAC} = 90^{\circ}$.

In this part of the question, you will be assessed on the quality of your organisation, communication and accuracy in writing.

Calculate the area of triangle ABC.

Give your answer in cm². You must show all your working.

[5 + 2 OCW]

3300U601 07

(b) Calcula You mu	e the volume of the prism. of give the units of your answ	wer.	[3]

Find the answer to the following number problem.	[5]
'(the LCM of 12, 18 and 24) ÷ (the HCF of 36 and 54	

(a)	Rearran	ge the follo ur answer i	wing form n its simpl	nula to ma lest form.	$\mathbf{ke} \ x \ \mathbf{the} \ \mathbf{s}$	subject.	[3
				2(x+y)	=7y-3		
• • • • • • • • • • • • • • • • • • • •							
•••••			••••				
(b)	Write do	wn the <i>n</i> th	term of th	ne followir	na seguen	ce.	 [2
(b)	Write do	wn the n th				ce. 27,	 [2
(b)	Write do						 [2
(b)	Write do						 [2
(b)	Write do						 [2
(b)	Write do						 [2

7. The diagram shows two right-angled triangles, joined together along a common side. $\widehat{SPQ} = 90^{\circ}$, $\widehat{SQR} = 90^{\circ}$, $\widehat{SQP} = 38^{\circ}$, PS = 8 cm and QR = 15 cm.

Diagram not drawn to scale

Calculate the size of angle x .	[6]
	•••••••••••••••••••••••••••••••••••••••

8.	All the members of a farming club visited the Royal Welsh Agricultural Show. They all travelled to the show either by bus or by car. None of them visited the show on more than one day. The decision to travel by car or by bus was independent of the day of the visit. A member of the club was selected at random. The probability that this member travelled by bus was 0.87 . The probability that this member visited the show on the first day was $\frac{2}{3}$.	
	(a) Complete the tree diagram shown below.	[2]
	Method of travel Day of visit	
	$\frac{2}{3}$ First day	
	Bus	
<	0·87 Other day	
	$\frac{2}{3}$ First day	
	Other day	
	(b) What is the probability that a member, chosen at random, was not one of those travelled by bus on the first day of the show?	who [3]
		••••••

Show that $(10w)$	$(w-1) - (2-3w)^2 \equiv w^2 + 5w - 7.$	[4]
o) Use the quadrati Give your answe	c formula to solve the equation $w^2 + 5w - 7 = 0$. rs correct to 2 decimal places.	[3]
b) Use the quadrati Give your answe	c formula to solve the equation $w^2 + 5w - 7 = 0$. rs correct to 2 decimal places.	[3]
D) Use the quadrati Give your answe	c formula to solve the equation $w^2 + 5w - 7 = 0$. rs correct to 2 decimal places.	[3]
Give your answe	c formula to solve the equation $w^2 + 5w - 7 = 0$. rs correct to 2 decimal places.	
Give your answe	rs correct to 2 decimal places.	
Give your answe	rs correct to 2 decimal places.	
Give your answe	rs correct to 2 decimal places.	
Give your answe	rs correct to 2 decimal places.	
Give your answe	rs correct to 2 decimal places.	

10. The line GH is a tangent to the circle at point Y. The line EF is parallel to the line GH. The vertices of triangle EFY lie on the circle. $E\widehat{Y}G = 60^{\circ}$.

Diagram not drawn to scale

Prove that <i>EFY</i> is an equilateral triangle. Give a reason for each step to justify your proof.	[3]

14	
A cone is joined to a cylinder, as shown below. The cone has a base radius of 11 cm and a slant height of 13 cm. The cylinder has the same radius, 11 cm, and a height of 17 cm. Calculate the total surface area of the composite solid. [4]	78
Diagram not drawn to scale	
Total surface area = cm ²	

The area of a rectangle is 137 cm ² , correct to the nearest cm ² . Its width is 11 cm, correct to the nearest cm.	
Calculate the greatest possible length of the rectangle. Give your answer correct to 3 significant figures.	[2]
A bag contains 5 red counters and 5 blue counters. Three counters are drawn at random from the bag at the same time. Calculate the probability that the three counters will be the same colour.	[3]
	······································

[1]

14. (a) Sketch the curve $y = \sin x$, for values of x in the range $x = 0^{\circ}$ to $x = 360^{\circ}$.

(b) Solve each of the following equations. Give all answers in the range $x = 0^{\circ}$ to $x = 360^{\circ}$.

(i)	$\sin x = 0.3$	[2]

•••••	 	•••••••••••••••••••••••••••••••••••••••

(ii) $\sin x + 1 = 0$	[1]

15.	Two similar pyramids have volumes of 3970 cm ³ and 3100 cm ³ respectively. The height of the larger pyramid is 25 cm. Calculate the height of the smaller pyramid.	E	Examine only
	Calculate the height of the smaller pyramid.	[3]	
	Height = cm		

16. Each of the two graphs below is described by **one** of the equations on the right. Put a **tick** in the box next to the equation which correctly describes each graph.

[2]

Graph A

Equation
describing
graph A

$$y = 7x^2$$

$$y = -(x+7)^2$$

$$y = (x - 7)^2$$

$$y = 7 - x^2$$

$$y = x^2 + 7$$

Graph B

Equation
describing
graph B

$$y = x^2 + 1$$

$$y = 2^x$$

$$y + 1 = x^2$$

$$y = \frac{1}{x}$$

$$y = x^0$$

© WJEC CBAC Ltd.

(3300U60-1)

17. *ABC* represents the **sector** of a circle with radius 7 cm and centre *A*, as shown below. $\overrightarrow{BAC} = x^{\circ}$, AD = 3 cm and BD = 6 cm.

Diagram not drawn to scale

Find the area of the shaded region <i>BCD</i> .	[8]
	······································
END OF DADED	
END OF PAPER	

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examine only
	Tritte the question hamber (e) in the fett hama margini	

