Surname	Centre Number	Candidate Number
Other Names		0

GCSE - NEW

3300U40-1

MATHEMATICS UNIT 2: CALCULATOR-ALLOWED INTERMEDIATE TIER

THURSDAY, 10 NOVEMBER 2016 – MORNING

1 hour 45 minutes

ADDITIONAL MATERIALS

A calculator will be required for this paper.

A ruler, a protractor and a pair of compasses may be required.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

You may use a pencil for graphs and diagrams only.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer **all** the questions in the spaces provided.

If you run out of space, use the continuation page at the back of the booklet, taking care to number the question(s) correctly.

Take π as 3·14 or use the π button on your calculator.

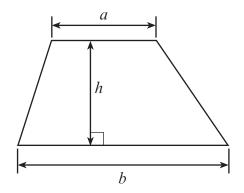
INFORMATION FOR CANDIDATES

You should give details of your method of solution when appropriate.

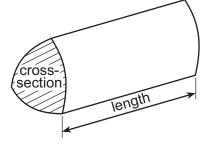
Unless stated, diagrams are not drawn to scale.

Scale drawing solutions will not be acceptable where you are asked to calculate.

The number of marks is given in brackets at the end of each question or part-question.


In question **9**, the assessment will take into account the quality of your linguistic and mathematical organisation, communication and accuracy in writing.

For Examiner's use only							
Question	Maximum Mark	Mark Awarded					
1.	4						
2.	3						
3.	3						
4.	5						
5.	3						
6.	3						
7.	4						
8.	Not tested	Summer 21					
9.	6						
10.	6						
11.	7						
12.	3						
13.	4						
14.	Not tested	Summer 21					
15.	5						
16.	Not tested	Summer 21					
17.	Not tested	Summer 21					
18.	7						
Total	63						



Formula List - Intermediate Tier

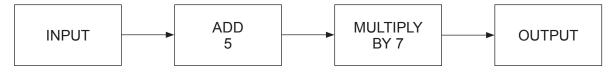
Area of trapezium = $\frac{1}{2} (a + b)h$

Volume of prism = area of cross-section × length

Using only the numbers in the following list,

	57	58	59	60	61	62	63	64	65	
write	down									
(a)	a prime nui	mber,								[1]
(b)	a cube nun	nber,								[1]
(c)	a factor of	186,								[1]
(d)	a multiple o	of 7·25.								[1]
Circle	e the correct One angle					g staten	nents.			
(4)	One of the	other an	gles mu	st be	C 10 00 .					
	1	80°	30°	•	120°		60°	3	60°.	[1]
(b)	Three of the				ral add ι	ıp to 25	0°.			
	70	0	360°		180°		110°	1:	25·5°.	[1]
(c)	Huw is faci He turns cl He has turr	ockwise	until he	e is faci ngle of	ng West					
		270°	3	0	90°		0·75°	(9°	[1]

© WJEC CBAC Ltd. (3300U40-1)


Turn over.

Shade the least n	umber of so	quares in t	he lower t	wo qua	adrants	s so t	nat the	grid ha	as rotatio	nal Exa
Shade the least n symmetry of order	2.	,						J		[3]
										-
										-
										-
										-
										-
										-
										-
										_
										_
										_
										-
										$ $

|-

- 4. (a) Solve the equation 3x 2 = 10. [2]
 - (b) A number machine is shown below.

(i) Calculate the OUTPUT when the INPUT is -2. [1]

(ii) Write down an expression for the OUTPUT when the INPUT is *n*. [2]

.....

Complete each row of the following table. The first row has been done for you. 5.

[3]

Place	Temperature at midday	Change	Temperature at following midday
Holyhead	-1°C	Up 3°C	2°C
Dolgellau	-3°C		1°C
Cardigan	2°C	Down 3°C	
Newport		Up 2°C	-2°C

6.

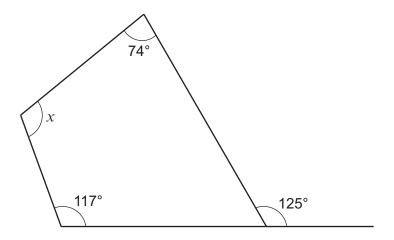


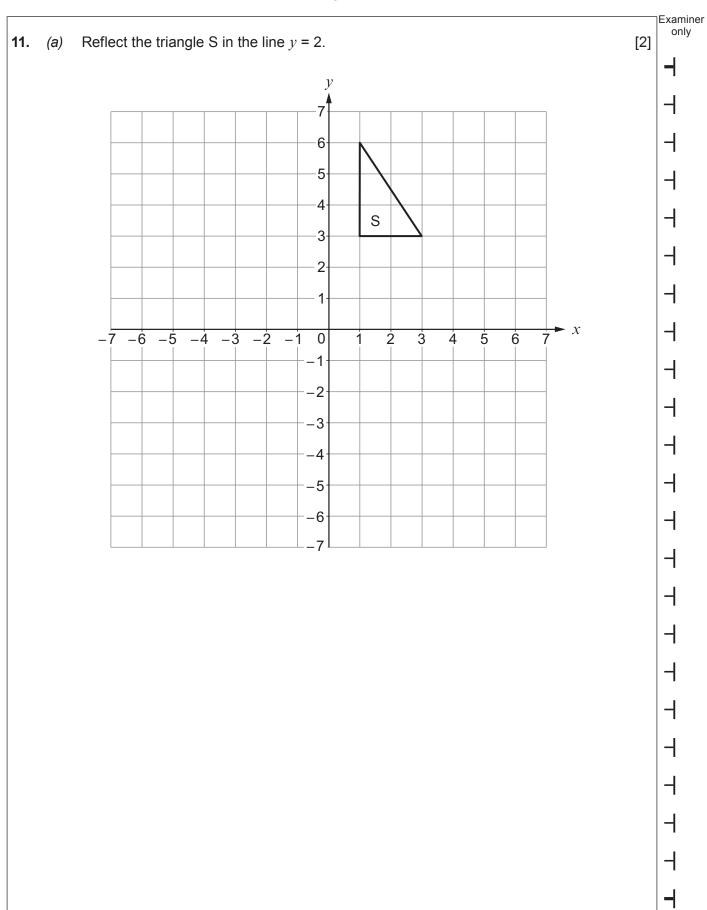
Diagram not drawn to scale

Find the size of angle x .	[3]
	······································
	······································
<i>x</i> =°	

\leftarrow	
0	
4	
\supset	
0	
0	
က	1

'If you increase a positive number by 10% and then decrease that new value by 10%, get back to your original number.'						
			•••••			
Circle either TRUE or FALSE for each statement given	below	N				
Circle either TRUE or FALSE for each statement given	below.	₹\\				
Circle either TRUE or FALSE for each statement given STATEMENT	below.	2022				
		FALSE				
STATEMENT		FALSE FALSE				
STATEMENT All equilateral triangles are congruent. All squares with equal areas are congruent. Circles with equal perimeters are congruent.	TRUE TRUE					
STATEMENT All equilateral triangles are congruent. All squares with equal areas are congruent. Circles with equal perimeters are congruent.	TRUE TRUE	FALSE				
All equilateral triangles are congruent. All squares with equal areas are congruent. Circles with equal perimeters are congruent.	TRUE TRUE	FALSE FALSE				
STATEMENT All equilateral triangles are congruent. All squares with equal areas are congruent. Circles with equal perimeters are congruent.	TRUE TRUE	FALSE FALSE				
STATEMENT All equilateral triangles are congruent. All squares with equal areas are congruent. Circles with equal perimeters are congruent.	TRUE TRUE	FALSE FALSE				

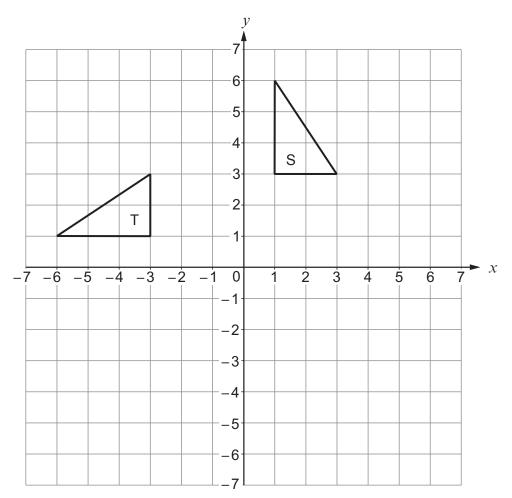
9.	In this question, you will be assessed on the quality of your organisation, communication and accuracy in writing.
	A square has a perimeter of 80 cm. A circle fits exactly inside the square, as shown in the diagram.
	Calculate the circumference of the circle. Give your answer correct to 1 decimal place. You must show your working. [4 + 2 OCW]



3300U401 09

10.	(a)	Write down the n th term of the following sequence.								
				3,	4,	5,	6,			
	(b)	The n th term of a different sequence is given by $n^2 + 7$.								
		(i)	Write do	wn the fi	rst three	terms of	this seque	nce.	[2]	
		(ii)						3 rd term = nas a value greater than 85?	[2]	
								las a value greater than 05:	[2]	
		•••••					t	erm.		

© WJEC CBAC Ltd. (3300U40-1)



© WJEC CBAC Ltd.

(3300U40-1)

(b) Describe fully a single transformation that transforms triangle S onto triangle T. [3]

© WJEC CBAC Ltd. (3300U40-1) Turn over.

Examiner only Translate the triangle S using the column vector (c) (i) [1] y -7[•] 6 5 S 2 \dashv 0 2 3 -1 -2 \dashv -3 \dashv -6 \dashv Write down the column vector that will reverse the translation in part (i). [1] \dashv \dashv

12. Circle the correct answer for each of the following.

(a)
$$x^3 \times x^6 =$$

[1]

$$\chi^{36}$$

$$\chi^{0.5}$$
 χ^2

$$\chi^2$$

$$x^9$$

 χ^{18}

(b) (7x - 5y) - (3x + 2y) =[1]

$$4x - 31$$

$$4x - 71$$

$$4x + 3y$$

$$4x - 3y$$
 $4x - 7y$ $4x + 3y$ $-4x + 7y$ $-4x - 7y$

$$-4x - 7y$$

A car travels x miles in 30 minutes. (c) Its average speed in miles per hour is

[1]

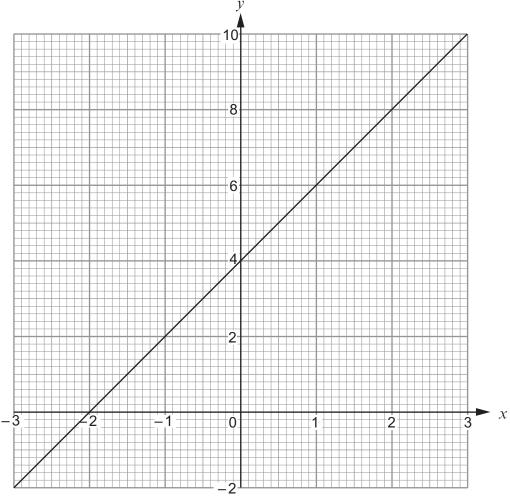
$$\frac{x}{2}$$

$$\frac{x}{30}$$

2x

$$\frac{2}{x}$$

30*x*


3.	A solution to the equation	
	$2x^3 - 3x - 17 = 0$	
	lies between 2 and 3.	
	Use the method of trial and improvement to find this solution correct to 1 decimal place. You must show all your working.	[4]
		••••

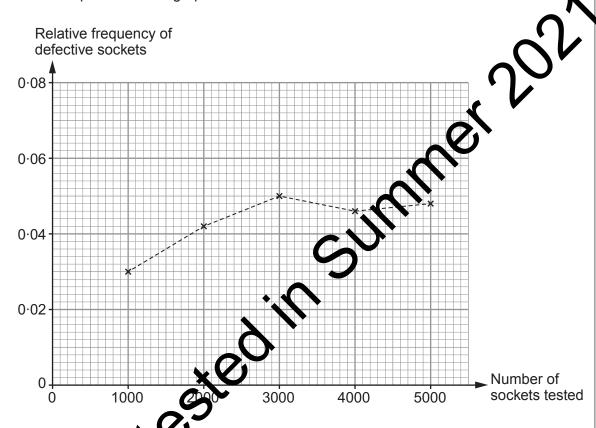
14.	At a college, a total of 28 students study one or more of the science subjects: Biology, Chemistry and Physics. The 28 students form the universal set, $\boldsymbol{\epsilon}$. Some parts of the Venn diagram below have already been completed.				
	It is also k	nown that: 5 students study only Biology 13 students study Chemistry			
	(a) Con	nplete the Venn diagram.	(3]		
	3	Biology Chemistry 2 1 Physics			
	(b) +0W	many students study Biology and Chemistry but not Physics?	[1]		
\		e of the students is chosen at random. at is the probability that this student studies Biology?	[2]		

15. (a) The diagram below shows the graph of a straight line for values of x from -3 to 3.

(i) Write down the gradient of the above line.

[1]

(ii) Write down the equation of the line in the form y = mx + c, where m and c are whole numbers. [2]


(b) Without drawing, show that the line 2y = 5x - 3 is parallel to the line 4y = 10x + 7. You must show working to support your answer. [2]

16.	A factory	uses a	machine	to	produce	electrical	sockets.
	/ \ Idoloi \	uoco a	machine	w	produce	CICCLITCAI	JOUNGIS

The manager carries out a survey to investigate the probability of the machine producing a defective socket.

The relative frequency of defective sockets produced was calculated after testing a total of 1000, 2000, 3000, 4000 and 5000 sockets.

The results are plotted on the graph below.

(a)	How many of the first 3000 sockets tested were defective?	[2]

(b) Write down the best estimate for the probability that one socket, selected at random, will be defective.

You must give a reason for your choice. [2]

Probability:

Reason:

17.	Points A , B , C and D lie on the circumference of a circle, centre O . BD is a diameter of the circle. The straight line $BC = 4.7 \text{cm}$ and $\overrightarrow{BAC} = 28^{\circ}$.	Examiner only
	D 4-7cm B 28°	
	Write down the size of \widehat{BDC} . Hence, calculate the length BD . You must show all your working. [5]	

© WJEC CBAC Ltd.

(3300U40-1)

18.	(a)	Factorise $x^2 - 2x - 24$, and hence solve $x^2 - 2x - 24 = 0$.	[3]
	(b)	Solve the equation $\frac{4x-3}{2} + \frac{7x+1}{6} = \frac{29}{2}$.	[4]
	······		
	•••••		
		END OF PAPER	

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examiner only
		7

