Surname	Centre Number	Candidate Number
Other Names		0

GCSE

3300U30-1

MATHEMATICS UNIT 1: NON-CALCULATOR INTERMEDIATE TIER

THURSDAY, 24 MAY 2018 - MORNING

1 hour 45 minutes

ADDITIONAL MATERIALS

The use of a calculator is not permitted in this examination. A ruler, protractor and a pair of compasses may be required.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

You may use a pencil for graphs and diagrams only.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all the questions in the spaces provided.

If you run out of space, use the continuation page at the back of the booklet. Question numbers must be given for all work written on the continuation page.

Take π as 3·14.

INFORMATION FOR CANDIDATES

You should give details of your method of solution when appropriate.

Unless stated, diagrams are not drawn to scale.

Scale drawing solutions will not be acceptable where you are asked to calculate.

The number of marks is given in brackets at the end of each question or part-question.

In question 8, the assessment will take into account the quality of your linguistic and mathematical organisation, communication and accuracy in writing.

MAY183300	U30101

For Examiner's use only		
Question	Maximum Mark	Mark Awarded
1.	5	
2.	3	
3.	6	
4.	4	
5.	5	
6.	3	
7.	3	
8.	6	
9.	5	
10.	3	
11.	5	
12.	7	
13.	6	
14.	4	
15.	2	
16.	3	
17.	5	
18.	5	
Total	80	

Formula List - Intermediate Tier

Area of trapezium = $\frac{1}{2}(a+b)h$

Volume of prism = area of cross-section × length

Examiner only

	mbers in the	following	g list,						
	12 13	14	15	16	17	18	19	20	
two prime	numbers that	have a	sum of 32,						[2]
The two nu	mbers are			and					••••••
a number th	nat is a multip	ole of bo	th 4 and 6,						[2]
a number th	nat is a factor	of 51.							[1]
			ne following.						
									[1]
5 mil	es 8 mi	les	10 miles	16 m	niles	32 mile	S		
2·2lb is app	proximately e	qual to							[1]
1 kg	2kg		4·4 kg	:	5 kg	10	kg		
	onrovimately	equal to							[1]
4 litres is ap	proximately								
	down two prime The two nu a number th a number th the the correct 16 km is ap 5 mile 2.2 lb is app	down two prime numbers that The two numbers are a number that is a multip a number that is a factor the the correct answer for each of the correct answer	down two prime numbers that have a The two numbers are a number that is a multiple of bo a number that is a factor of 51. e the correct answer for each of the 16 km is approximately equal to 5 miles 8 miles	11 12 13 14 15 down two prime numbers that have a sum of 32, The two numbers are	11 12 13 14 15 16 down two prime numbers that have a sum of 32, The two numbers are and a number that is a multiple of both 4 and 6, a number that is a factor of 51. e the correct answer for each of the following. 16 km is approximately equal to 5 miles 8 miles 10 miles 16 m 2.2 lb is approximately equal to	11 12 13 14 15 16 17 down two prime numbers that have a sum of 32, The two numbers are and a number that is a multiple of both 4 and 6, a number that is a factor of 51. e the correct answer for each of the following. 16 km is approximately equal to 5 miles 8 miles 10 miles 16 miles 2.2 lb is approximately equal to	11 12 13 14 15 16 17 18 down two prime numbers that have a sum of 32, The two numbers are and	two prime numbers that have a sum of 32, The two numbers are and	down two prime numbers that have a sum of 32, The two numbers are and a number that is a multiple of both 4 and 6, a number that is a factor of 51. e the correct answer for each of the following. 16 km is approximately equal to 5 miles 8 miles 10 miles 16 miles 32 miles 2-2 lb is approximately equal to

© WJEC CBAC Ltd. (3300U30-1)

Turn over.

3. The table below shows some values of y = x - 3 for values of x from -4 to 6.

X	-4	-2	0	2	4	6
y = x - 3	– 7		-3			3

(a) Complete the table above.

[2]

Examiner only

(b) On the graph paper below, draw the graph of the straight line y = x - 3 for values of x from -4 to 6 only.

[2]

 \dashv

04

	(c)	The straight line you have drawn on the graph for values of x from -4 to 6 is a diagonal of a square.	
		Write down the coordinates of the four corners of this square.	[2]
	((
4.	A bal	g contains a number of different coloured balls. I is selected at random from the bag. probability of selecting a blue ball is 0·3.	
	(a)	Why is the following statement incorrect? Explain your answer clearly.	[1]
		'More than half the balls in the bag are blue.'	
	(b)	What is the probability that a ball selected at random from the bag is not blue?	[1]
	(c)	There are 50 balls in the bag. How many of them are blue?	[2]

Turn over.

© WJEC CBAC Ltd.

(3300U30-1)

The table below shows the first five terms of a sequence of numbers. 6. (a)

Term	t_1	t_2	t_3	t_4	t_5
Value	2	5	8	11	14

Circle the correct equation that connects terms t_6 and t_7 .

[1]

$$t_6 = t_7 + 3$$
 $t_7 = t_6 + 14$ $t_7 - t_6 = 1$ $t_7 = t_6 - 3$ $t_7 = t_6 + 3$.

$$t_7 = t_6 + 14$$

$$t_7 - t_6 = 1$$

$$t_7 = t_6 - 3$$

$$t_7 = t_6 + 3$$

The *n*th term of another sequence is given by 2n - 11. (b)

Write down the value of,

the 10th term,

[1]

(ii)	the	3rd	term

[1]

7	Find the whole number that estisfies all of the following conditions	Examiner only
7.	Find the whole number that satisfies all of the following conditions.	
	It is a whole number between 1 and 100 inclusive.10% of the number is greater than 2 but less than 8.	
	 ½ of the number is a square number. 	
	• The number is not a multiple of 4. [3]	
	The number is	

© WJEC CBAC Ltd.

(3300U30-1)

8. In this question, you will be assessed on the quality of your organisation, communication and accuracy in writing.

In the diagram below, *ABCE* is a square whose perimeter is 28 cm. *CDE* is a right-angled triangle whose area is 35 cm².

Diagram not drawn to scale

You must show all your working.	[4 + 2 OCW]

Calculate the length of DE.

330003

© WJEC CBAC Ltd.

(3300U30-1)

Describe **fully** the **single** transformation that transforms shape S to shape T. (b) [3] 6 5 4 S Т 3-2-1 -6 -5 3 **-**3 0 -2--3 -5 -6

© WJEC CBAC Ltd. (3300U30-1) Turn over.

Examiner only

Examine
only

[1]

10.	(a)	Circle the best approximate value for the following calculation.
-----	-----	---

596.3 38.2 + 11.5

110

12

11

120

10

(b)

A number is increased by 4% of its value. This is done 7 times, each time increasing the previous value by 4%. Circle the multiplier that you would use to find the value after the 7 increases.

[1]

× 1·04⁷

 $\times \ 1.4^7 \times 0.04^7$

× 1·04⁶

× 1.28

(c) Calculate $\frac{4}{5} \div \frac{1}{4}$.

Circle the correct answer.

[1]

11.	30 rugby	supporters	travel to	Cardiff on	a coach.
	oolugby	Supporters	tiavei to	Odiani on	a coacii.

They decide to investigate how many of them can sing one, or both, of the songs 'Hen Wlad fy Nhadau' and 'Bread of Heaven'.

- 12 say they can sing both songs.18 say they can sing 'Bread of Heaven'.5 say they cannot sing either of the songs.
- Complete the Venn diagram below to show this information. (a) The universal set, ε , contains all of the 30 supporters on the coach.

[3]

3	Hen Wlad fy Nhadau	Bread of Heaven
	I .	

•••••		
(b)	One of these supporters is chosen at random. What is the probability that this person can sing 'Hen Wlad fy Nhadau'?	[2]
		•••••••••••••••••••••••••••••••••••••••

(a)	Expand and simplify the following expression.	[4]
	$x(5x-2) - 3(x^2 - 2x + 7)$	
• • • • • • • • • • • • • • • • • • • •		
•••••		
		······································
•••••		
(b)	Solve $\frac{22-f}{3} = 6$.	[3]
(a)	A fair, six-sided dice is thrown twice. What is the probability that a 3 is thrown on both occasions?	[2]

Ξха	mi	ner
0	nly	,

(b) A company has offices in Llanelli, Caernarfon, Newtown and Ebbw Vale. Its national committee is made up of workers from these four offices.

The pie chart below shows what fraction of the committee members come from each office.

There is an equal number of members from Newtown and Ebbw Vale.

A member is chosen at random from this committee to be its chairperson.

(i) The probability that the chosen member works at the Llanelli office is shown in the table below.

Comple	ete 1	the	tabl	e.
--------	-------	-----	------	----

[2]

Office	Llanelli	Caernarfon	Newtown	Ebbw Vale
Probability	1/2			

(ii)	What is the probability that the member chosen as chairperson works at eit Llanelli or the Ebbw Vale office?	her the
	You must show all your working.	[2]

© WJEC CBAC Ltd. (3300U30-1) Turn over.

4.	(a)	Calculate the value of $(2 \times 10^{-4}) \times (7.8 \times 10^{9})$. Give your answer in standard form.	[2]
	(b)	Calculate the value of $\frac{3.9 \times 10^8}{3000}$. Give your answer in standard form.	[2]
. F	Facto	orise $12x^2 + 3xy$.	[2]
•			

Examiner only

16. Calculate the size of angle x in the diagram below.

Diagram not drawn to scale

<u></u>	 	 	 	······································
•••••	 	 	 	· · · · · · · · · · · · · · · · · · ·

		Examiner only
17.	The line <i>AB</i> is drawn below. The point <i>P</i> lies above the line <i>AB</i> .	- '
	The region in which <i>P</i> is located is such that	
	P is nearer to point A than to point B,	
	• $\overrightarrow{BAP} \leqslant 60^{\circ}$,	
	• AP ≥ 6 cm.	
	Using a ruler and a pair of compasses, construct suitable lines and arcs to represent thes	; -
	conditions. Construction arcs must be clearly shown.	-
	Shade the region in which the point <i>P</i> is located. [5]	$ \neg$
		-
		$ $ \dashv
		\dashv
		-
		-
		-
		-
		'
	 	
	A B	-
		-

|-

18. In the triangle *ABC* shown below, $\overrightarrow{BAC} = 40^{\circ}$ and $\overrightarrow{ACB} = 80^{\circ}$. *X* is a point on side *AC* such that BX = BC.

Diagram not drawn to scale

Give reasons for each step of your proof. You must show all your working.	[5]

END OF PAPER

stion ber	Additional page, if required. Write the question number(s) in the left-hand margin.	E
		· · · · · · · · · · · ·

